Title : Sirtuin 7-mediated deacetylation of WD repeat domain 77 (WDR77) suppresses cancer cell growth by reducing WDR77/PRMT5 transmethylase complex activity.

Pub. Date : 2018 Nov 16

PMID : 30282801






6 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Using co-expression in HEK293T cells and co-immunoprecipitation assays, we observed that SIRT7 deacetylates WDR77 at Lys-3 and Lys-243, which reduced of WDR77"s interaction with PRMT5. Lysine sirtuin 7 Homo sapiens
2 Using co-expression in HEK293T cells and co-immunoprecipitation assays, we observed that SIRT7 deacetylates WDR77 at Lys-3 and Lys-243, which reduced of WDR77"s interaction with PRMT5. Lysine sirtuin 7 Homo sapiens
3 In summary, SIRT7 is a major deacetylase for WDR77, and SIRT7-mediated deacetylation of WDR77 at Lys-3 and Lys-243 weakens the WDR77-PRMT5 interaction and activity and thereby suppresses growth of cancer cells. Lysine sirtuin 7 Homo sapiens
4 In summary, SIRT7 is a major deacetylase for WDR77, and SIRT7-mediated deacetylation of WDR77 at Lys-3 and Lys-243 weakens the WDR77-PRMT5 interaction and activity and thereby suppresses growth of cancer cells. Lysine sirtuin 7 Homo sapiens
5 In summary, SIRT7 is a major deacetylase for WDR77, and SIRT7-mediated deacetylation of WDR77 at Lys-3 and Lys-243 weakens the WDR77-PRMT5 interaction and activity and thereby suppresses growth of cancer cells. Lysine sirtuin 7 Homo sapiens
6 In summary, SIRT7 is a major deacetylase for WDR77, and SIRT7-mediated deacetylation of WDR77 at Lys-3 and Lys-243 weakens the WDR77-PRMT5 interaction and activity and thereby suppresses growth of cancer cells. Lysine sirtuin 7 Homo sapiens