Title : Decrease in S-adenosylmethionine synthesis by 6-mercaptopurine and methylmercaptopurine ribonucleoside in Molt F4 human malignant lymphoblasts.

Pub. Date : 1994 Nov 15

PMID : 7998928






16 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 6-Mercaptopurine (6-MP) and methylmercaptopurine ribonucleoside (Me-MPR) are purine anti-metabolites which are both metabolized to methylthio-IMP (Me-tIMP), a strong inhibitor of purine synthesis de novo. Mercaptopurine TIMP metallopeptidase inhibitor 1 Homo sapiens
2 6-Mercaptopurine (6-MP) and methylmercaptopurine ribonucleoside (Me-MPR) are purine anti-metabolites which are both metabolized to methylthio-IMP (Me-tIMP), a strong inhibitor of purine synthesis de novo. Mercaptopurine TIMP metallopeptidase inhibitor 1 Homo sapiens
3 6-Mercaptopurine (6-MP) and methylmercaptopurine ribonucleoside (Me-MPR) are purine anti-metabolites which are both metabolized to methylthio-IMP (Me-tIMP), a strong inhibitor of purine synthesis de novo. methylmercaptopurine ribonucleoside TIMP metallopeptidase inhibitor 1 Homo sapiens
4 6-Mercaptopurine (6-MP) and methylmercaptopurine ribonucleoside (Me-MPR) are purine anti-metabolites which are both metabolized to methylthio-IMP (Me-tIMP), a strong inhibitor of purine synthesis de novo. me-mpr TIMP metallopeptidase inhibitor 1 Homo sapiens
5 6-Mercaptopurine (6-MP) and methylmercaptopurine ribonucleoside (Me-MPR) are purine anti-metabolites which are both metabolized to methylthio-IMP (Me-tIMP), a strong inhibitor of purine synthesis de novo. purine TIMP metallopeptidase inhibitor 1 Homo sapiens
6 6-Mercaptopurine (6-MP) and methylmercaptopurine ribonucleoside (Me-MPR) are purine anti-metabolites which are both metabolized to methylthio-IMP (Me-tIMP), a strong inhibitor of purine synthesis de novo. methylthio-imp TIMP metallopeptidase inhibitor 1 Homo sapiens
7 6-Mercaptopurine (6-MP) and methylmercaptopurine ribonucleoside (Me-MPR) are purine anti-metabolites which are both metabolized to methylthio-IMP (Me-tIMP), a strong inhibitor of purine synthesis de novo. purine TIMP metallopeptidase inhibitor 1 Homo sapiens
8 6-MP is converted into tIMP, and thereafter it is methylated to Me-tIMP by thiopurine methyltransferase, an S-adenosylmethionine (S-Ado-Met)-dependent conversion. Mercaptopurine TIMP metallopeptidase inhibitor 1 Homo sapiens
9 6-MP is converted into tIMP, and thereafter it is methylated to Me-tIMP by thiopurine methyltransferase, an S-adenosylmethionine (S-Ado-Met)-dependent conversion. Mercaptopurine TIMP metallopeptidase inhibitor 1 Homo sapiens
10 6-MP is converted into tIMP, and thereafter it is methylated to Me-tIMP by thiopurine methyltransferase, an S-adenosylmethionine (S-Ado-Met)-dependent conversion. S-Adenosylmethionine TIMP metallopeptidase inhibitor 1 Homo sapiens
11 6-MP is converted into tIMP, and thereafter it is methylated to Me-tIMP by thiopurine methyltransferase, an S-adenosylmethionine (S-Ado-Met)-dependent conversion. S-Adenosylmethionine TIMP metallopeptidase inhibitor 1 Homo sapiens
12 6-MP is converted into tIMP, and thereafter it is methylated to Me-tIMP by thiopurine methyltransferase, an S-adenosylmethionine (S-Ado-Met)-dependent conversion. S-Adenosylmethionine TIMP metallopeptidase inhibitor 1 Homo sapiens
13 The effects of both 6-MP and Me-MPR can be ascribed to a decreased conversion of methionine into S-Ado-Met, due to the ATP depletion induced by the inhibition of purine synthesis de novo by Me-tIMP. Methionine TIMP metallopeptidase inhibitor 1 Homo sapiens
14 The effects of both 6-MP and Me-MPR can be ascribed to a decreased conversion of methionine into S-Ado-Met, due to the ATP depletion induced by the inhibition of purine synthesis de novo by Me-tIMP. S-Adenosylmethionine TIMP metallopeptidase inhibitor 1 Homo sapiens
15 The effects of both 6-MP and Me-MPR can be ascribed to a decreased conversion of methionine into S-Ado-Met, due to the ATP depletion induced by the inhibition of purine synthesis de novo by Me-tIMP. Adenosine Triphosphate TIMP metallopeptidase inhibitor 1 Homo sapiens
16 The effects of both 6-MP and Me-MPR can be ascribed to a decreased conversion of methionine into S-Ado-Met, due to the ATP depletion induced by the inhibition of purine synthesis de novo by Me-tIMP. purine TIMP metallopeptidase inhibitor 1 Homo sapiens