Title : Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation.

Pub. Date : 2022 Jun

PMID : 35504134






8 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Fatty Acids, Nonesterified growth differentiation factor 15 Homo sapiens
2 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Fatty Acids, Nonesterified growth differentiation factor 15 Homo sapiens
3 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Fatty Acids, Nonesterified growth differentiation factor 15 Homo sapiens
4 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Fatty Acids, Nonesterified growth differentiation factor 15 Homo sapiens
5 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Oleic Acid growth differentiation factor 15 Homo sapiens
6 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Oleic Acid growth differentiation factor 15 Homo sapiens
7 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Palmitic Acid growth differentiation factor 15 Homo sapiens
8 In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Palmitic Acid growth differentiation factor 15 Homo sapiens