Title : Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP).

Pub. Date : 2007 Jan 1

PMID : 16950208






4 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 The inhibitory effects of a potent and selective AKT/BKB small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP), on the activation of AKT, its antiproliferation and apoptosis-inducing effects in prostate cancer cell lines: DU-145, PC-3, LNCaP, and CL-1, an androgen-independent LNCaP variant, and CL-1 xenograft mouse model were assessed by Western blot analysis, kinase assay, cell survival assay, and apoptosis assay in this report. 9-chloro-2-methylellipticinium acetate adhesion G protein-coupled receptor L1 Homo sapiens
2 The inhibitory effects of a potent and selective AKT/BKB small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP), on the activation of AKT, its antiproliferation and apoptosis-inducing effects in prostate cancer cell lines: DU-145, PC-3, LNCaP, and CL-1, an androgen-independent LNCaP variant, and CL-1 xenograft mouse model were assessed by Western blot analysis, kinase assay, cell survival assay, and apoptosis assay in this report. 9-chloro-2-methylellipticinium acetate adhesion G protein-coupled receptor L1 Homo sapiens
3 The inhibitory effects of a potent and selective AKT/BKB small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP), on the activation of AKT, its antiproliferation and apoptosis-inducing effects in prostate cancer cell lines: DU-145, PC-3, LNCaP, and CL-1, an androgen-independent LNCaP variant, and CL-1 xenograft mouse model were assessed by Western blot analysis, kinase assay, cell survival assay, and apoptosis assay in this report. 9-chloro-2-methylellipticinium acetate adhesion G protein-coupled receptor L1 Homo sapiens
4 The inhibitory effects of a potent and selective AKT/BKB small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP), on the activation of AKT, its antiproliferation and apoptosis-inducing effects in prostate cancer cell lines: DU-145, PC-3, LNCaP, and CL-1, an androgen-independent LNCaP variant, and CL-1 xenograft mouse model were assessed by Western blot analysis, kinase assay, cell survival assay, and apoptosis assay in this report. 9-chloro-2-methylellipticinium acetate adhesion G protein-coupled receptor L1 Homo sapiens