Title : Posttranscriptional regulation of colony-stimulating factor-1 (CSF-1) and CSF-1 receptor gene expression during inhibition of phorbol-ester-induced monocytic differentiation by dexamethasone and cyclosporin A: potential involvement of a destabilizing protein.

Pub. Date : 1993 Sep

PMID : 8359233






4 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Posttranscriptional regulation of colony-stimulating factor-1 (CSF-1) and CSF-1 receptor gene expression during inhibition of phorbol-ester-induced monocytic differentiation by dexamethasone and cyclosporin A: potential involvement of a destabilizing protein. Cyclosporine colony stimulating factor 1 Homo sapiens
2 The present studies demonstrate that dexamethasone (dex) and cyclosporin A (CsA) resulted in inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced monocytic differentiation of HL60 cells, as well as TPA induction of c-fms and CSF-1 transcripts. Cyclosporine colony stimulating factor 1 Homo sapiens
3 The present studies demonstrate that dexamethasone (dex) and cyclosporin A (CsA) resulted in inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced monocytic differentiation of HL60 cells, as well as TPA induction of c-fms and CSF-1 transcripts. Cyclosporine colony stimulating factor 1 Homo sapiens
4 Taken together, our results suggest the existence of a labile mRNA regulatory protein or proteins, whose actions include destabilization of both c-fms and CSF-1 transcripts after inhibition of TPA-induced monocytic differentiation by dex or CsA. Cyclosporine colony stimulating factor 1 Homo sapiens