Pub. Date : 2016 Aug 1
PMID : 27287717
4 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | In vivo studies revealed that combining amlexanox with MEK inhibitor AZD6244 significantly inhibited the xenograft tumor growth of NSCLC cells harboring activating EGFR mutations, including EGFR(T790M) Overall, our findings define IKBKE as a direct effector target of EGFR and provide a therapeutic rationale to target IKBKE as a strategy to eradicate EGFR-TKI-resistant NSCLC cells. | AZD 6244 | epidermal growth factor receptor | Homo sapiens |
2 | In vivo studies revealed that combining amlexanox with MEK inhibitor AZD6244 significantly inhibited the xenograft tumor growth of NSCLC cells harboring activating EGFR mutations, including EGFR(T790M) Overall, our findings define IKBKE as a direct effector target of EGFR and provide a therapeutic rationale to target IKBKE as a strategy to eradicate EGFR-TKI-resistant NSCLC cells. | AZD 6244 | epidermal growth factor receptor | Homo sapiens |
3 | In vivo studies revealed that combining amlexanox with MEK inhibitor AZD6244 significantly inhibited the xenograft tumor growth of NSCLC cells harboring activating EGFR mutations, including EGFR(T790M) Overall, our findings define IKBKE as a direct effector target of EGFR and provide a therapeutic rationale to target IKBKE as a strategy to eradicate EGFR-TKI-resistant NSCLC cells. | AZD 6244 | epidermal growth factor receptor | Homo sapiens |
4 | In vivo studies revealed that combining amlexanox with MEK inhibitor AZD6244 significantly inhibited the xenograft tumor growth of NSCLC cells harboring activating EGFR mutations, including EGFR(T790M) Overall, our findings define IKBKE as a direct effector target of EGFR and provide a therapeutic rationale to target IKBKE as a strategy to eradicate EGFR-TKI-resistant NSCLC cells. | AZD 6244 | epidermal growth factor receptor | Homo sapiens |