Pub. Date : 2014
PMID : 25416390
3 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Use of CO as metabolic fuel for microbes relies on enzymes like carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS), which catalyze conversions resembling processes that eventually initiated the dawn of life.CODHs catalyze the (reversible) oxidation of CO with water to CO2 and come in two different flavors with unprecedented active site architectures. | N2,N6-bis(4-(2-aminoethoxy)quinolin-2-yl)-4-((4-fluorobenzyl)oxy)pyridine-2,6-dicarboxamide | acyl-CoA synthetase short chain family member 2 | Homo sapiens |
2 | Use of CO as metabolic fuel for microbes relies on enzymes like carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS), which catalyze conversions resembling processes that eventually initiated the dawn of life.CODHs catalyze the (reversible) oxidation of CO with water to CO2 and come in two different flavors with unprecedented active site architectures. | N2,N6-bis(4-(2-aminoethoxy)quinolin-2-yl)-4-((4-fluorobenzyl)oxy)pyridine-2,6-dicarboxamide | acyl-CoA synthetase short chain family member 2 | Homo sapiens |
3 | Ni- and Fe-containing CODHs are frequently associated with ACS, where the CODH component reduces CO2 to CO and ACS condenses CO with a methyl group and CoA to acetyl-CoA.Our current state of knowledge on how the three enzymes catalyze these reactions will be summarized and the different strategies of CODHs to achieve the same task within different active site architectures compared. | N2,N6-bis(4-(2-aminoethoxy)quinolin-2-yl)-4-((4-fluorobenzyl)oxy)pyridine-2,6-dicarboxamide | acyl-CoA synthetase short chain family member 2 | Homo sapiens |