Title : Thermochemical insight into the reduction of CO to CH3OH with [Re(CO)](+) and [Mn(CO)](+) complexes.

Pub. Date : 2014 Jun 18

PMID : 24853114






6 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 The hydride donor ability (DeltaG H(-)) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol(-1), based on calorimetry measurements of the hydride-transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)](+) to generate the methylated analogue, CpRe(PPh3)(NO)(CH2OMe). Hydroxymethyl radical caveolin 1 Homo sapiens
2 The hydride donor ability (DeltaG H(-)) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol(-1), based on calorimetry measurements of the hydride-transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)](+) to generate the methylated analogue, CpRe(PPh3)(NO)(CH2OMe). Hydroxymethyl radical caveolin 1 Homo sapiens
3 The hydride donor ability (DeltaG H(-)) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol(-1), based on calorimetry measurements of the hydride-transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)](+) to generate the methylated analogue, CpRe(PPh3)(NO)(CH2OMe). Hydroxymethyl radical caveolin 1 Homo sapiens
4 The hydride donor ability (DeltaG H(-)) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol(-1), based on calorimetry measurements of the hydride-transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)](+) to generate the methylated analogue, CpRe(PPh3)(NO)(CH2OMe). Hydroxymethyl radical caveolin 1 Homo sapiens
5 These potentials were used as estimates for the oxidation of CpRe(PPh3)(NO)(CHO) or CpRe(PPh3)(NO)(CH2OH) or the reduction of [CpRe(PPh3)(NO)(CHOH)](+). Hydroxymethyl radical caveolin 1 Homo sapiens
6 These potentials were used as estimates for the oxidation of CpRe(PPh3)(NO)(CHO) or CpRe(PPh3)(NO)(CH2OH) or the reduction of [CpRe(PPh3)(NO)(CHOH)](+). Hydroxymethyl radical caveolin 1 Homo sapiens