Pub. Date : 2007 Feb
PMID : 17259394
11 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | High glucose, high insulin, and high glucose+high insulin stimulated phosphorylation of 4E-BP1, a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
2 | High glucose, high insulin, and high glucose+high insulin stimulated phosphorylation of 4E-BP1, a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
3 | High glucose, high insulin, and high glucose+high insulin stimulated phosphorylation of 4E-BP1, a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
4 | High glucose, high insulin, and high glucose+high insulin stimulated phosphorylation of 4E-BP1, a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
5 | High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
6 | High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
7 | High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
8 | High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
9 | High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
10 | High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |
11 | High glucose, high insulin, and high glucose+high insulin increased Erk phosphorylation, which is an upstream regulator of eIF4E phosphorylation, and PD098059, which is a MEK inhibitor that blocks Erk activation, abolished laminin-beta1 synthesis. | Glucose | eukaryotic translation initiation factor 4E | Homo sapiens |