Pub. Date : 2005 Nov
PMID : 15975956
7 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. | Resveratrol | ATR serine/threonine kinase | Homo sapiens |
2 | The involvement of these molecules in resveratrol-induced S phase was also supported by the studies showing that addition of ATM/ATR inhibitor caffeine reverses resveratrol-caused activation of ATM/ATR-Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X, and S phase arrest. | Resveratrol | ATR serine/threonine kinase | Homo sapiens |
3 | The involvement of these molecules in resveratrol-induced S phase was also supported by the studies showing that addition of ATM/ATR inhibitor caffeine reverses resveratrol-caused activation of ATM/ATR-Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X, and S phase arrest. | Resveratrol | ATR serine/threonine kinase | Homo sapiens |
4 | The involvement of these molecules in resveratrol-induced S phase was also supported by the studies showing that addition of ATM/ATR inhibitor caffeine reverses resveratrol-caused activation of ATM/ATR-Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X, and S phase arrest. | Resveratrol | ATR serine/threonine kinase | Homo sapiens |
5 | The involvement of these molecules in resveratrol-induced S phase was also supported by the studies showing that addition of ATM/ATR inhibitor caffeine reverses resveratrol-caused activation of ATM/ATR-Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X, and S phase arrest. | Resveratrol | ATR serine/threonine kinase | Homo sapiens |
6 | These findings for the first time identify that resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for DNA damage and S phase arrest selectively in ovarian cancer cells, and provide a rationale for the potential efficacy of ATM/ATR agonists in the prevention and intervention of cancer. | Resveratrol | ATR serine/threonine kinase | Homo sapiens |
7 | These findings for the first time identify that resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for DNA damage and S phase arrest selectively in ovarian cancer cells, and provide a rationale for the potential efficacy of ATM/ATR agonists in the prevention and intervention of cancer. | Resveratrol | ATR serine/threonine kinase | Homo sapiens |