Title : Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity.

Pub. Date : 2004 Sep 15

PMID : 15313215






4 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. Cysteine phosphatase and tensin homolog Homo sapiens
2 Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. Cysteine phosphatase and tensin homolog Homo sapiens
3 Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. Cysteine phosphatase and tensin homolog Homo sapiens
4 Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. Cysteine phosphatase and tensin homolog Homo sapiens