Pub. Date : 2004 Sep 15
PMID : 15313215
4 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. | Cysteine | phosphatase and tensin homolog | Homo sapiens |
2 | Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. | Cysteine | phosphatase and tensin homolog | Homo sapiens |
3 | Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. | Cysteine | phosphatase and tensin homolog | Homo sapiens |
4 | Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. | Cysteine | phosphatase and tensin homolog | Homo sapiens |