Title : Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus.

Pub. Date : 2003 Sep

PMID : 12966368






5 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Tacrolimus cytochrome P450 family 3 subfamily A member 4 Homo sapiens
2 OBJECTIVE: Our objective was to determine the role of genetic polymorphisms in CYP3A4, CYP3A5, and MDR-1 with respect to interindividual variability in cyclosporine and tacrolimus pharmacokinetics. Tacrolimus cytochrome P450 family 3 subfamily A member 4 Homo sapiens
3 CYP3A4*1B allele carriers (n = 10) had lower tacrolimus dose-adjusted trough levels compared with those in patients with the wild-type (*1/*1) genotype (n = 54): median and range, 57 (40-163) ng/mL per mg/kg versus 89 (34-398) ng/mL per mg/kg) (P =.003, Mann-Whitney test). Tacrolimus cytochrome P450 family 3 subfamily A member 4 Homo sapiens
4 CONCLUSION: As a group, patients with the CYP3A5*3/*3 genotype require less tacrolimus to reach target predose concentrations compared with CYP3A5*1 allele carriers, whereas CYP3A4*1B carriers require more tacrolimus to reach target trough concentrations compared with CYP3A4*1 homozygotes. Tacrolimus cytochrome P450 family 3 subfamily A member 4 Homo sapiens
5 CONCLUSION: As a group, patients with the CYP3A5*3/*3 genotype require less tacrolimus to reach target predose concentrations compared with CYP3A5*1 allele carriers, whereas CYP3A4*1B carriers require more tacrolimus to reach target trough concentrations compared with CYP3A4*1 homozygotes. Tacrolimus cytochrome P450 family 3 subfamily A member 4 Homo sapiens