Title : Effects of serotonergic agents on neuronal nicotinic acetylcholine receptors.

Pub. Date : 1995 Mar 28

PMID : 7708749






5 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 In Xenopus oocytes expressing neuronal nicotinic acetylcholine receptors (nAcChoRs), made up of alpha 2 and beta 4 subunits, acetylcholine (AcCho) elicited ionic membrane currents (AcCho currents) that were modulated by serotonergic agents. Acetylcholine MGC75582, possible similarity to act2 S homeolog Xenopus laevis
2 Both agonists and antagonists specific for various serotonin (5-hydroxytryptamine, 5HT) receptor subtypes interacted directly with alpha 2 beta 4 nAcChoRs: 5HT, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin, methysergide, spiperone, and ketanserin reversibly reduced the amplitude of AcCho currents and accelerated their decay. Serotonin MGC75582, possible similarity to act2 S homeolog Xenopus laevis
3 Both agonists and antagonists specific for various serotonin (5-hydroxytryptamine, 5HT) receptor subtypes interacted directly with alpha 2 beta 4 nAcChoRs: 5HT, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin, methysergide, spiperone, and ketanserin reversibly reduced the amplitude of AcCho currents and accelerated their decay. Methysergide MGC75582, possible similarity to act2 S homeolog Xenopus laevis
4 Both agonists and antagonists specific for various serotonin (5-hydroxytryptamine, 5HT) receptor subtypes interacted directly with alpha 2 beta 4 nAcChoRs: 5HT, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin, methysergide, spiperone, and ketanserin reversibly reduced the amplitude of AcCho currents and accelerated their decay. Spiperone MGC75582, possible similarity to act2 S homeolog Xenopus laevis
5 Both agonists and antagonists specific for various serotonin (5-hydroxytryptamine, 5HT) receptor subtypes interacted directly with alpha 2 beta 4 nAcChoRs: 5HT, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin, methysergide, spiperone, and ketanserin reversibly reduced the amplitude of AcCho currents and accelerated their decay. Ketanserin MGC75582, possible similarity to act2 S homeolog Xenopus laevis