Pub. Date : 1990 Nov
PMID : 2173426
8 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | In the presence of extracellular calcium (1.85 mM), electrical stimulation of the left stellate ganglion (12 Hz, 1 min) induced a closely related release of NE and NPY with the molar ratio of approximately 400-600 (NE) to 1 (NPY). | Calcium | pro-neuropeptide Y | Cavia porcellus |
2 | In the presence of extracellular calcium (1.85 mM), electrical stimulation of the left stellate ganglion (12 Hz, 1 min) induced a closely related release of NE and NPY with the molar ratio of approximately 400-600 (NE) to 1 (NPY). | Calcium | pro-neuropeptide Y | Cavia porcellus |
3 | However, the overflow of NE and NPY was markedly attenuated by the unselective calcium antagonist flunarizine (1-10 microM) and completely prevented by the neuronal (N-type) calcium channel blockers omega-conotoxin (1-100 nM) and cadmium chloride (10-100 microM), indicating a key role for N-type calcium channels in the exocytotic release of transmitters from cardiac sympathetic nerve fibers. | Calcium | pro-neuropeptide Y | Cavia porcellus |
4 | However, the overflow of NE and NPY was markedly attenuated by the unselective calcium antagonist flunarizine (1-10 microM) and completely prevented by the neuronal (N-type) calcium channel blockers omega-conotoxin (1-100 nM) and cadmium chloride (10-100 microM), indicating a key role for N-type calcium channels in the exocytotic release of transmitters from cardiac sympathetic nerve fibers. | Flunarizine | pro-neuropeptide Y | Cavia porcellus |
5 | However, the overflow of NE and NPY was markedly attenuated by the unselective calcium antagonist flunarizine (1-10 microM) and completely prevented by the neuronal (N-type) calcium channel blockers omega-conotoxin (1-100 nM) and cadmium chloride (10-100 microM), indicating a key role for N-type calcium channels in the exocytotic release of transmitters from cardiac sympathetic nerve fibers. | Cadmium Chloride | pro-neuropeptide Y | Cavia porcellus |
6 | Possibly due to unspecific actions, such as interference with sodium channels or uptake1-blocking properties, the phenylalkylamines verapamil (0.01-10 microM) and gallopamil (1-10 microM) reduced NPY overflow with only a minor effect on NE overflow. | phenylalkylamines | pro-neuropeptide Y | Cavia porcellus |
7 | Possibly due to unspecific actions, such as interference with sodium channels or uptake1-blocking properties, the phenylalkylamines verapamil (0.01-10 microM) and gallopamil (1-10 microM) reduced NPY overflow with only a minor effect on NE overflow. | Verapamil | pro-neuropeptide Y | Cavia porcellus |
8 | Possibly due to unspecific actions, such as interference with sodium channels or uptake1-blocking properties, the phenylalkylamines verapamil (0.01-10 microM) and gallopamil (1-10 microM) reduced NPY overflow with only a minor effect on NE overflow. | Gallopamil | pro-neuropeptide Y | Cavia porcellus |