Pub. Date : 2010 Jan
PMID : 20038812
4 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. | Sodium | sodium voltage-gated channel alpha subunit 9 | Homo sapiens |
2 | We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. | Sodium | sodium voltage-gated channel alpha subunit 9 | Homo sapiens |
3 | We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. | Sodium | sodium voltage-gated channel alpha subunit 9 | Homo sapiens |
4 | We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. | Sodium | sodium voltage-gated channel alpha subunit 9 | Homo sapiens |