Title : Interaction of nucleotides with acidic fibroblast growth factor (FGF-1).

Pub. Date : 1994 Jun 14

PMID : 7516183






5 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 A wide variety of nucleotides are shown to bind to acidic fibroblast growth factor (aFGF) as demonstrated by their ability to (1) inhibit the heat-induced aggregation of the protein, (2) enhance the thermal stability of aFGF as monitored by both intrinsic fluorescence and CD, (3) interact with fluorescent nucleotides and displace a bound polysulfated naphthylurea compound, suramin, (4) reduce the size of heparin-aFGF complexes, and (5) protect a reactive aFGF thiol group. Suramin fibroblast growth factor 1 Bos taurus
2 A wide variety of nucleotides are shown to bind to acidic fibroblast growth factor (aFGF) as demonstrated by their ability to (1) inhibit the heat-induced aggregation of the protein, (2) enhance the thermal stability of aFGF as monitored by both intrinsic fluorescence and CD, (3) interact with fluorescent nucleotides and displace a bound polysulfated naphthylurea compound, suramin, (4) reduce the size of heparin-aFGF complexes, and (5) protect a reactive aFGF thiol group. Suramin fibroblast growth factor 1 Bos taurus
3 A wide variety of nucleotides are shown to bind to acidic fibroblast growth factor (aFGF) as demonstrated by their ability to (1) inhibit the heat-induced aggregation of the protein, (2) enhance the thermal stability of aFGF as monitored by both intrinsic fluorescence and CD, (3) interact with fluorescent nucleotides and displace a bound polysulfated naphthylurea compound, suramin, (4) reduce the size of heparin-aFGF complexes, and (5) protect a reactive aFGF thiol group. Suramin fibroblast growth factor 1 Bos taurus
4 A wide variety of nucleotides are shown to bind to acidic fibroblast growth factor (aFGF) as demonstrated by their ability to (1) inhibit the heat-induced aggregation of the protein, (2) enhance the thermal stability of aFGF as monitored by both intrinsic fluorescence and CD, (3) interact with fluorescent nucleotides and displace a bound polysulfated naphthylurea compound, suramin, (4) reduce the size of heparin-aFGF complexes, and (5) protect a reactive aFGF thiol group. Suramin fibroblast growth factor 1 Bos taurus
5 A wide variety of nucleotides are shown to bind to acidic fibroblast growth factor (aFGF) as demonstrated by their ability to (1) inhibit the heat-induced aggregation of the protein, (2) enhance the thermal stability of aFGF as monitored by both intrinsic fluorescence and CD, (3) interact with fluorescent nucleotides and displace a bound polysulfated naphthylurea compound, suramin, (4) reduce the size of heparin-aFGF complexes, and (5) protect a reactive aFGF thiol group. Suramin fibroblast growth factor 1 Bos taurus