Pub. Date : 2021 Sep 13
PMID : 34518608
5 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | An ERK1/2 inhibitor significantly inhibited ketamine-induced increases in the glucose uptake in depressive-like mice (P < 0.05), as well as prolonged the immobility time (P < 0.01). | Ketamine | mitogen-activated protein kinase 3 | Mus musculus |
2 | Ketamine treatment in depressive-like mice significantly increased the expression levels of p-ERK1/2 and GLUT3 in the prefrontal cortex (P < 0.01), whereas an ERK1/2 inhibitor significantly inhibited ketamine-induced increases (P < 0.01).Our present findings demonstrate that ketamine mitigated depressive-like behaviors in female mice by activating the ERK/GLUT3 signal pathway, which further increased glucose uptake in the prefrontal cortex. | Ketamine | mitogen-activated protein kinase 3 | Mus musculus |
3 | Ketamine treatment in depressive-like mice significantly increased the expression levels of p-ERK1/2 and GLUT3 in the prefrontal cortex (P < 0.01), whereas an ERK1/2 inhibitor significantly inhibited ketamine-induced increases (P < 0.01).Our present findings demonstrate that ketamine mitigated depressive-like behaviors in female mice by activating the ERK/GLUT3 signal pathway, which further increased glucose uptake in the prefrontal cortex. | Ketamine | mitogen-activated protein kinase 3 | Mus musculus |
4 | Ketamine treatment in depressive-like mice significantly increased the expression levels of p-ERK1/2 and GLUT3 in the prefrontal cortex (P < 0.01), whereas an ERK1/2 inhibitor significantly inhibited ketamine-induced increases (P < 0.01).Our present findings demonstrate that ketamine mitigated depressive-like behaviors in female mice by activating the ERK/GLUT3 signal pathway, which further increased glucose uptake in the prefrontal cortex. | Ketamine | mitogen-activated protein kinase 3 | Mus musculus |
5 | Ketamine treatment in depressive-like mice significantly increased the expression levels of p-ERK1/2 and GLUT3 in the prefrontal cortex (P < 0.01), whereas an ERK1/2 inhibitor significantly inhibited ketamine-induced increases (P < 0.01).Our present findings demonstrate that ketamine mitigated depressive-like behaviors in female mice by activating the ERK/GLUT3 signal pathway, which further increased glucose uptake in the prefrontal cortex. | Ketamine | mitogen-activated protein kinase 3 | Mus musculus |