Title : A Positive Feed Forward Loop between Wnt/β-Catenin and NOX4 Promotes Silicon Dioxide-Induced Epithelial-Mesenchymal Transition of Lung Epithelial Cells.

Pub. Date : 2020

PMID : 33376577






6 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 A mechanistic study further demonstrated that the Wnt3a-mediated activation of canonical Wnt signaling could augment the SiO2-induced NOX4 expression and reactive oxygen species (ROS) production but reduced glutathione (GSH), while Wnt inhibitor DKK1 exhibited an opposite effect to Wnt3a. Glutathione Wnt family member 3A Homo sapiens
2 A mechanistic study further demonstrated that the Wnt3a-mediated activation of canonical Wnt signaling could augment the SiO2-induced NOX4 expression and reactive oxygen species (ROS) production but reduced glutathione (GSH), while Wnt inhibitor DKK1 exhibited an opposite effect to Wnt3a. Glutathione Wnt family member 3A Homo sapiens
3 A mechanistic study further demonstrated that the Wnt3a-mediated activation of canonical Wnt signaling could augment the SiO2-induced NOX4 expression and reactive oxygen species (ROS) production but reduced glutathione (GSH), while Wnt inhibitor DKK1 exhibited an opposite effect to Wnt3a. Glutathione Wnt family member 3A Homo sapiens
4 A mechanistic study further demonstrated that the Wnt3a-mediated activation of canonical Wnt signaling could augment the SiO2-induced NOX4 expression and reactive oxygen species (ROS) production but reduced glutathione (GSH), while Wnt inhibitor DKK1 exhibited an opposite effect to Wnt3a. Glutathione Wnt family member 3A Homo sapiens
5 A mechanistic study further demonstrated that the Wnt3a-mediated activation of canonical Wnt signaling could augment the SiO2-induced NOX4 expression and reactive oxygen species (ROS) production but reduced glutathione (GSH), while Wnt inhibitor DKK1 exhibited an opposite effect to Wnt3a. Glutathione Wnt family member 3A Homo sapiens
6 A mechanistic study further demonstrated that the Wnt3a-mediated activation of canonical Wnt signaling could augment the SiO2-induced NOX4 expression and reactive oxygen species (ROS) production but reduced glutathione (GSH), while Wnt inhibitor DKK1 exhibited an opposite effect to Wnt3a. Glutathione Wnt family member 3A Homo sapiens