Pub. Date : 2019 Aug 20
PMID : 31276379
4 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | In 2007, we reported the first evidence that Fe3O4 nanoparticles (NPs) have intrinsic peroxidase-mimicking activity, and since that time, hundreds of nanomaterials have been found to mimic the catalytic activity of peroxidase, oxidase, catalase, haloperoxidase, glutathione peroxidase, uricase, methane monooxygenase, hydrolase, and superoxide dismutase. | ferryl iron | catalase | Homo sapiens |
2 | For example, Fe3O4 NPs show pH-dependent peroxidase-like and catalase-like activities; Prussian blue NPs simultaneously possess peroxidase-, catalase-, and superoxide dismutase-like activity; and Mn3O4 NPs mimic all three cellular antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase. | ferryl iron | catalase | Homo sapiens |
3 | For example, Fe3O4 NPs show pH-dependent peroxidase-like and catalase-like activities; Prussian blue NPs simultaneously possess peroxidase-, catalase-, and superoxide dismutase-like activity; and Mn3O4 NPs mimic all three cellular antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase. | ferryl iron | catalase | Homo sapiens |
4 | For example, Fe3O4 NPs show pH-dependent peroxidase-like and catalase-like activities; Prussian blue NPs simultaneously possess peroxidase-, catalase-, and superoxide dismutase-like activity; and Mn3O4 NPs mimic all three cellular antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase. | ferryl iron | catalase | Homo sapiens |