Title : Proangiogenic Effect of Metformin in Endothelial Cells Is via Upregulation of VEGFR1/2 and Their Signaling under Hyperglycemia-Hypoxia.

Pub. Date : 2018 Jan 19

PMID : 29351188






3 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Metformin promoted HUVEC migration and inhibited apoptosis via upregulation of vascular endothelial growth factor (VEGF) receptors (VEGFR1/R2), fatty acid binding protein 4 (FABP4), ERK/mitogen-activated protein kinase signaling, chemokine ligand 8, lymphocyte antigen 96, Rho kinase 1 (ROCK1), matrix metalloproteinase 16 (MMP16) and tissue factor inhibitor-2 under hyperglycemia-chemical hypoxia. Metformin fatty acid binding protein 4 Homo sapiens
2 Metformin promoted HUVEC migration and inhibited apoptosis via upregulation of vascular endothelial growth factor (VEGF) receptors (VEGFR1/R2), fatty acid binding protein 4 (FABP4), ERK/mitogen-activated protein kinase signaling, chemokine ligand 8, lymphocyte antigen 96, Rho kinase 1 (ROCK1), matrix metalloproteinase 16 (MMP16) and tissue factor inhibitor-2 under hyperglycemia-chemical hypoxia. Metformin fatty acid binding protein 4 Homo sapiens
3 Therefore, metformin"s dual effect in hyperglycemia-chemical hypoxia is mediated by direct effect on VEGFR1/R2 leading to activation of cell migration through MMP16 and ROCK1 upregulation, and inhibition of apoptosis by increase in phospho-ERK1/2 and FABP4, components of VEGF signaling cascades. Metformin fatty acid binding protein 4 Homo sapiens