Title : Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10.

Pub. Date : 2009 Aug 13

PMID : 19486934






3 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 It has been reported that UDP-glucuronosyltransferase (UGT) 1A1, UGT1A8, UGT1A9, and UGT1A10 are enzymes for raloxifene glucuronidation, and UGT1A8 and UGT1A10 are absent in the human liver, whereas UGT1A1, UGT1A8, UGT1A9, and UGT1A10 are present in the human intestine. Raloxifene Hydrochloride UDP glucuronosyltransferase family 1 member A8 Homo sapiens
2 It has been reported that UDP-glucuronosyltransferase (UGT) 1A1, UGT1A8, UGT1A9, and UGT1A10 are enzymes for raloxifene glucuronidation, and UGT1A8 and UGT1A10 are absent in the human liver, whereas UGT1A1, UGT1A8, UGT1A9, and UGT1A10 are present in the human intestine. Raloxifene Hydrochloride UDP glucuronosyltransferase family 1 member A8 Homo sapiens
3 It has been reported that UDP-glucuronosyltransferase (UGT) 1A1, UGT1A8, UGT1A9, and UGT1A10 are enzymes for raloxifene glucuronidation, and UGT1A8 and UGT1A10 are absent in the human liver, whereas UGT1A1, UGT1A8, UGT1A9, and UGT1A10 are present in the human intestine. Raloxifene Hydrochloride UDP glucuronosyltransferase family 1 member A8 Homo sapiens