Title : The inhibitory effect of the proinflammatory cytokine TNFalpha on erythroid differentiation involves erythroid transcription factor modulation.

Pub. Date : 2009 Mar

PMID : 19212691






4 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 We show here the inhibitory effect of tumor necrosis factor alpha (TNFalpha), a proinflammatory cytokine, on hemoglobinization and erythroid transcription factor GATA-1 expression in erythroleukemia (HEL) as well as in chronic myelogenous leukemia (K562) cells, which were induced to differentiate towards the erythroid lineage after aclacinomycin (Acla), doxorubicin (Dox) or hemin (HM) treatment. Doxorubicin tumor necrosis factor Homo sapiens
2 We show here the inhibitory effect of tumor necrosis factor alpha (TNFalpha), a proinflammatory cytokine, on hemoglobinization and erythroid transcription factor GATA-1 expression in erythroleukemia (HEL) as well as in chronic myelogenous leukemia (K562) cells, which were induced to differentiate towards the erythroid lineage after aclacinomycin (Acla), doxorubicin (Dox) or hemin (HM) treatment. Doxorubicin tumor necrosis factor Homo sapiens
3 We show here the inhibitory effect of tumor necrosis factor alpha (TNFalpha), a proinflammatory cytokine, on hemoglobinization and erythroid transcription factor GATA-1 expression in erythroleukemia (HEL) as well as in chronic myelogenous leukemia (K562) cells, which were induced to differentiate towards the erythroid lineage after aclacinomycin (Acla), doxorubicin (Dox) or hemin (HM) treatment. Doxorubicin tumor necrosis factor Homo sapiens
4 We show here the inhibitory effect of tumor necrosis factor alpha (TNFalpha), a proinflammatory cytokine, on hemoglobinization and erythroid transcription factor GATA-1 expression in erythroleukemia (HEL) as well as in chronic myelogenous leukemia (K562) cells, which were induced to differentiate towards the erythroid lineage after aclacinomycin (Acla), doxorubicin (Dox) or hemin (HM) treatment. Doxorubicin tumor necrosis factor Homo sapiens