Title : Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP.

Pub. Date : 2009 Feb 24

PMID : 19196987






5 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Substitutions at Ser-362 and 366 of p53 by alanines (p53 AA) result in reduced phosphorylation of p53 by IKK2, decreased association with beta-TrCP1, and thus increased stability of p53 and expression of p53 target genes such as p21, altering the G1 phase of the cell cycle. Alanine tumor protein p53 Homo sapiens
2 Substitutions at Ser-362 and 366 of p53 by alanines (p53 AA) result in reduced phosphorylation of p53 by IKK2, decreased association with beta-TrCP1, and thus increased stability of p53 and expression of p53 target genes such as p21, altering the G1 phase of the cell cycle. Alanine tumor protein p53 Homo sapiens
3 Substitutions at Ser-362 and 366 of p53 by alanines (p53 AA) result in reduced phosphorylation of p53 by IKK2, decreased association with beta-TrCP1, and thus increased stability of p53 and expression of p53 target genes such as p21, altering the G1 phase of the cell cycle. Alanine tumor protein p53 Homo sapiens
4 Substitutions at Ser-362 and 366 of p53 by alanines (p53 AA) result in reduced phosphorylation of p53 by IKK2, decreased association with beta-TrCP1, and thus increased stability of p53 and expression of p53 target genes such as p21, altering the G1 phase of the cell cycle. Alanine tumor protein p53 Homo sapiens
5 Substitutions at Ser-362 and 366 of p53 by alanines (p53 AA) result in reduced phosphorylation of p53 by IKK2, decreased association with beta-TrCP1, and thus increased stability of p53 and expression of p53 target genes such as p21, altering the G1 phase of the cell cycle. Alanine tumor protein p53 Homo sapiens