Title : NAD+ modulates p53 DNA binding specificity and function.

Pub. Date : 2004 Nov

PMID : 15509798






10 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 NAD+ modulates p53 DNA binding specificity and function. NAD tumor protein p53 Homo sapiens
2 Small-molecule manipulation of p53 DNA binding activity has been an elusive goal, but here we show that NAD(+) binds to p53 tetramers, induces a conformational change, and modulates p53 DNA binding specificity in vitro. NAD tumor protein p53 Homo sapiens
3 Small-molecule manipulation of p53 DNA binding activity has been an elusive goal, but here we show that NAD(+) binds to p53 tetramers, induces a conformational change, and modulates p53 DNA binding specificity in vitro. NAD tumor protein p53 Homo sapiens
4 Small-molecule manipulation of p53 DNA binding activity has been an elusive goal, but here we show that NAD(+) binds to p53 tetramers, induces a conformational change, and modulates p53 DNA binding specificity in vitro. NAD tumor protein p53 Homo sapiens
5 These effects are likely due to a direct effect of NAD(+) on p53, as a molecule structurally related to part of NAD(+), TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B(1)), inhibits intracellular p53 activity. NAD tumor protein p53 Homo sapiens
6 These effects are likely due to a direct effect of NAD(+) on p53, as a molecule structurally related to part of NAD(+), TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B(1)), inhibits intracellular p53 activity. NAD tumor protein p53 Homo sapiens
7 These effects are likely due to a direct effect of NAD(+) on p53, as a molecule structurally related to part of NAD(+), TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B(1)), inhibits intracellular p53 activity. NAD tumor protein p53 Homo sapiens
8 These effects are likely due to a direct effect of NAD(+) on p53, as a molecule structurally related to part of NAD(+), TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B(1)), inhibits intracellular p53 activity. NAD tumor protein p53 Homo sapiens
9 These effects are likely due to a direct effect of NAD(+) on p53, as a molecule structurally related to part of NAD(+), TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B(1)), inhibits intracellular p53 activity. NAD tumor protein p53 Homo sapiens
10 These effects are likely due to a direct effect of NAD(+) on p53, as a molecule structurally related to part of NAD(+), TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B(1)), inhibits intracellular p53 activity. NAD tumor protein p53 Homo sapiens