Pub. Date : 1992 Oct
PMID : 1422591
7 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Activation of protein kinase C (PKC) by phorbol-12-myristate-1 3-acetate was found to inhibit the histamine as well as ATP-induced Ca2" response in a dose-dependent manner.6. | Histamine | proline rich transmembrane protein 2 | Homo sapiens |
2 | Activation of protein kinase C (PKC) by phorbol-12-myristate-1 3-acetate was found to inhibit the histamine as well as ATP-induced Ca2" response in a dose-dependent manner.6. | Histamine | proline rich transmembrane protein 2 | Homo sapiens |
3 | In PKC downregulated cells the second phase of the histamine-induced Ca2+ response was significantly elevated, indicating the involvement of PKC in the negative feedback on the Ca2+ influx(control cells: second phase: 601 +/- 52 nM (n = 11); PKC downregulated cells: second phase:890 +/- 90nM, n = I0, P<0.05).7. | Histamine | proline rich transmembrane protein 2 | Homo sapiens |
4 | In PKC downregulated cells the second phase of the histamine-induced Ca2+ response was significantly elevated, indicating the involvement of PKC in the negative feedback on the Ca2+ influx(control cells: second phase: 601 +/- 52 nM (n = 11); PKC downregulated cells: second phase:890 +/- 90nM, n = I0, P<0.05).7. | Histamine | proline rich transmembrane protein 2 | Homo sapiens |
5 | In PKC downregulated cells the second phase of the histamine-induced Ca2+ response was significantly elevated, indicating the involvement of PKC in the negative feedback on the Ca2+ influx(control cells: second phase: 601 +/- 52 nM (n = 11); PKC downregulated cells: second phase:890 +/- 90nM, n = I0, P<0.05).7. | Histamine | proline rich transmembrane protein 2 | Homo sapiens |
6 | Based on our experimental data we suggest that short-term desensitization of the histamine H,receptor evolves from two different processes: a selective reduction of the histamine-induced Ca2+ release, mediated by a PKC-independent pathway, and a non-selective inhibition of the receptormediated Ca2+ influx activated by a PKC-dependent pathway. | Histamine | proline rich transmembrane protein 2 | Homo sapiens |
7 | Based on our experimental data we suggest that short-term desensitization of the histamine H,receptor evolves from two different processes: a selective reduction of the histamine-induced Ca2+ release, mediated by a PKC-independent pathway, and a non-selective inhibition of the receptormediated Ca2+ influx activated by a PKC-dependent pathway. | Histamine | proline rich transmembrane protein 2 | Homo sapiens |