Title : 17-epiestriol, an estrogen metabolite, is more potent than estradiol in inhibiting vascular cell adhesion molecule 1 (VCAM-1) mRNA expression.

Pub. Date : 2003 Apr 4

PMID : 12547825






8 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 We report here that 17-epiestriol, an estrogen metabolite and a selective estrogen receptor (ER) beta agonist, is approximately 400x more potent than 17-beta E(2) in suppressing tumor necrosis factor (TNF) alpha-induced VCAM-1 mRNA as well as protein expression in human umbilical vein endothelial cells. 17-Epiestriol tumor necrosis factor Homo sapiens
2 We further show that, 1) 17-epiestriol induces the expression of endothelial nitric-oxide synthase mRNA and protein, 2) 17-epiestriol prevents TNFalpha-induced migration of NFkappaB into the nucleus, 3) N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthesis, abolishes 17-epiestriol-mediated inhibition of TNFalpha-induced VCAM-1 expression and migration of NFkappaB from the cytoplasm to the nucleus. 17-Epiestriol tumor necrosis factor Homo sapiens
3 We further show that, 1) 17-epiestriol induces the expression of endothelial nitric-oxide synthase mRNA and protein, 2) 17-epiestriol prevents TNFalpha-induced migration of NFkappaB into the nucleus, 3) N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthesis, abolishes 17-epiestriol-mediated inhibition of TNFalpha-induced VCAM-1 expression and migration of NFkappaB from the cytoplasm to the nucleus. 17-Epiestriol tumor necrosis factor Homo sapiens
4 We further show that, 1) 17-epiestriol induces the expression of endothelial nitric-oxide synthase mRNA and protein, 2) 17-epiestriol prevents TNFalpha-induced migration of NFkappaB into the nucleus, 3) N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthesis, abolishes 17-epiestriol-mediated inhibition of TNFalpha-induced VCAM-1 expression and migration of NFkappaB from the cytoplasm to the nucleus. 17-Epiestriol tumor necrosis factor Homo sapiens
5 We further show that, 1) 17-epiestriol induces the expression of endothelial nitric-oxide synthase mRNA and protein, 2) 17-epiestriol prevents TNFalpha-induced migration of NFkappaB into the nucleus, 3) N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthesis, abolishes 17-epiestriol-mediated inhibition of TNFalpha-induced VCAM-1 expression and migration of NFkappaB from the cytoplasm to the nucleus. 17-Epiestriol tumor necrosis factor Homo sapiens
6 We further show that, 1) 17-epiestriol induces the expression of endothelial nitric-oxide synthase mRNA and protein, 2) 17-epiestriol prevents TNFalpha-induced migration of NFkappaB into the nucleus, 3) N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthesis, abolishes 17-epiestriol-mediated inhibition of TNFalpha-induced VCAM-1 expression and migration of NFkappaB from the cytoplasm to the nucleus. 17-Epiestriol tumor necrosis factor Homo sapiens
7 We further show that, 1) 17-epiestriol induces the expression of endothelial nitric-oxide synthase mRNA and protein, 2) 17-epiestriol prevents TNFalpha-induced migration of NFkappaB into the nucleus, 3) N(G)-nitro-l-arginine methyl ester, an inhibitor of NO synthesis, abolishes 17-epiestriol-mediated inhibition of TNFalpha-induced VCAM-1 expression and migration of NFkappaB from the cytoplasm to the nucleus. 17-Epiestriol tumor necrosis factor Homo sapiens
8 Our results indicate that 17-epiestriol is more potent than 17-beta E(2) in suppressing TNFalpha-induced VCAM-1 expression and that this action is modulated at least in part through NO. 17-Epiestriol tumor necrosis factor Homo sapiens