Pub. Date : 1999 Jun
PMID : 10378001
7 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Time-resolved fluorescence and absorption measurements are performed on hypericin complexed with human serum albumin, HSA (1:4, 1:1 and approximately 5:1 hypericin: HSA complexes). | hypericin | albumin | Homo sapiens |
2 | Our results are consistent with the conclusions of previous studies indicating that hypericin binds to HSA by means of a specific hydrogen-bonded interaction between its carbonyl oxygen and the N1-H of the tryptophan residue in the IIA subdomain of HSA. | hypericin | albumin | Homo sapiens |
3 | Our results are consistent with the conclusions of previous studies indicating that hypericin binds to HSA by means of a specific hydrogen-bonded interaction between its carbonyl oxygen and the N1-H of the tryptophan residue in the IIA subdomain of HSA. | hypericin | albumin | Homo sapiens |
4 | A single-exponential rotational diffusion time of 31 ns is measured for hypericin bound to HSA, indicating that it is very rigidly held. | hypericin | albumin | Homo sapiens |
5 | Energy transfer from the tryptophan residue of HSA to hypericin is very efficient and is characterized by a critical distance of 94 A, from which we estimate a time constant for energy transfer of approximately 3 x 10(-15) s. Although it is tightly bound to HSA, hypericin is still capable of executing excited-state intramolecular proton (or hydrogen atom) transfer in the approximately 5:1 complex, albeit to a lesser extent than when it is free in solution. | hypericin | albumin | Homo sapiens |
6 | Energy transfer from the tryptophan residue of HSA to hypericin is very efficient and is characterized by a critical distance of 94 A, from which we estimate a time constant for energy transfer of approximately 3 x 10(-15) s. Although it is tightly bound to HSA, hypericin is still capable of executing excited-state intramolecular proton (or hydrogen atom) transfer in the approximately 5:1 complex, albeit to a lesser extent than when it is free in solution. | hypericin | albumin | Homo sapiens |
7 | Energy transfer from the tryptophan residue of HSA to hypericin is very efficient and is characterized by a critical distance of 94 A, from which we estimate a time constant for energy transfer of approximately 3 x 10(-15) s. Although it is tightly bound to HSA, hypericin is still capable of executing excited-state intramolecular proton (or hydrogen atom) transfer in the approximately 5:1 complex, albeit to a lesser extent than when it is free in solution. | hypericin | albumin | Homo sapiens |