PMID-sentid Pub_year Sent_text comp_official_name comp_offsetprotein_name organism prot_offset 20038812-4 2010 We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. Sodium 105-111 sodium voltage-gated channel alpha subunit 4 Homo sapiens 212-218 20038812-4 2010 We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. Sodium 197-203 sodium voltage-gated channel alpha subunit 4 Homo sapiens 212-218 20038812-4 2010 We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. Sodium 197-203 sodium voltage-gated channel alpha subunit 4 Homo sapiens 212-218 20038812-4 2010 We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. Sodium 197-203 sodium voltage-gated channel alpha subunit 4 Homo sapiens 212-218