Title : Titania-Carbon Nitride Interfaces in Gold-Catalyzed CO Oxidation.

Pub. Date : 2021 Dec 29

PMID : 34918899






3 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 A systematic study of CO oxidation turnover numbers in the absence and in the presence of hydrogen over the composites loaded with well-calibrated 2-4 nm gold nanoparticles clearly shows that (1) the chemical composition of the support surface has much less impact on PROX (preferential oxidation of CO in excess hydrogen) than on dry CO oxidation, (2) NH2-terminated supports are as active as OH-terminated supports in PROX, (3) hydrogen/water-mediated CO oxidation pathways are active on C3N4-based Au catalysts, and (4) PROX activity requires a rather large porosity (40 nm), which suggests the involvement of much larger intermediates than the usually postulated peroxo-type species. Water pyruvate dehydrogenase complex component X Homo sapiens
2 A systematic study of CO oxidation turnover numbers in the absence and in the presence of hydrogen over the composites loaded with well-calibrated 2-4 nm gold nanoparticles clearly shows that (1) the chemical composition of the support surface has much less impact on PROX (preferential oxidation of CO in excess hydrogen) than on dry CO oxidation, (2) NH2-terminated supports are as active as OH-terminated supports in PROX, (3) hydrogen/water-mediated CO oxidation pathways are active on C3N4-based Au catalysts, and (4) PROX activity requires a rather large porosity (40 nm), which suggests the involvement of much larger intermediates than the usually postulated peroxo-type species. Water pyruvate dehydrogenase complex component X Homo sapiens
3 A systematic study of CO oxidation turnover numbers in the absence and in the presence of hydrogen over the composites loaded with well-calibrated 2-4 nm gold nanoparticles clearly shows that (1) the chemical composition of the support surface has much less impact on PROX (preferential oxidation of CO in excess hydrogen) than on dry CO oxidation, (2) NH2-terminated supports are as active as OH-terminated supports in PROX, (3) hydrogen/water-mediated CO oxidation pathways are active on C3N4-based Au catalysts, and (4) PROX activity requires a rather large porosity (40 nm), which suggests the involvement of much larger intermediates than the usually postulated peroxo-type species. Water pyruvate dehydrogenase complex component X Homo sapiens