Title : Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent Cdc2-tyr15 phosphorylation via ATM-Chk1/2-Cdc25C pathway.

Pub. Date : 2015 Jan 15

PMID : 25450480






3 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent Cdc2-tyr15 phosphorylation via ATM-Chk1/2-Cdc25C pathway. jaridonin cell division cycle 25C Homo sapiens
2 Jaridonin also resulted in enhanced phosphorylation of Cdc25C via the activation of checkpoint kinases Chk1 and Chk2, as well as in increased phospho-H2A.X (Ser139), which is known to be phosphorylated by ATM in response to DNA damage. jaridonin cell division cycle 25C Homo sapiens
3 In conclusion, these findings identified that Jaridonin-induced cell cycle arrest in human esophageal cancer cells is associated with ROS-mediated activation of ATM-Chk1/2-Cdc25C pathway. jaridonin cell division cycle 25C Homo sapiens