PMID-sentid Pub_year Sent_text comp_official_name comp_offsetprotein_name organism prot_offset 465887-1 1979 1 Rat isolated diaphragm preparations were stimulated indirectly either intermittently at 20, 50 or 100 Hz or continuously at 0.2 Hz.2 Addition of 1.8 muM paraoxon (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which undergoes slow spontaneous reactivation) for 5 min to the organ bath produced a failure of the muscle to maintain tetanic tension (tetanic fade, Wedensky inhibition) and potentiated the neuromuscular blocking activity of exogenous acetylcholine. Paraoxon 155-163 acetylcholinesterase Rattus norvegicus 180-200 465887-2 1979 The rates of recovery from both these effects were recorded.3 In a series of experiments with dyflos (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which does not undergo spontaneous reactivation) the relationship between functional acetylcholinesterase activity and neuromuscular blocking activity of exogenous acetylcholine was also determined.4 From the data obtained, the relationship between functional acetylcholinesterase activity and tetanic fade was calculated. Isoflurophate 94-100 acetylcholinesterase Rattus norvegicus 117-137 465887-2 1979 The rates of recovery from both these effects were recorded.3 In a series of experiments with dyflos (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which does not undergo spontaneous reactivation) the relationship between functional acetylcholinesterase activity and neuromuscular blocking activity of exogenous acetylcholine was also determined.4 From the data obtained, the relationship between functional acetylcholinesterase activity and tetanic fade was calculated. Isoflurophate 94-100 acetylcholinesterase Rattus norvegicus 258-278 465887-2 1979 The rates of recovery from both these effects were recorded.3 In a series of experiments with dyflos (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which does not undergo spontaneous reactivation) the relationship between functional acetylcholinesterase activity and neuromuscular blocking activity of exogenous acetylcholine was also determined.4 From the data obtained, the relationship between functional acetylcholinesterase activity and tetanic fade was calculated. Isoflurophate 94-100 acetylcholinesterase Rattus norvegicus 258-278