PMID-sentid Pub_year Sent_text comp_official_name comp_offsetprotein_name organism prot_offset 26117007-5 2015 In process of inducing effect of 20 mmol/L metformin on THP-1 cells, the expressions of BCL-XL and BIM did not significantly changed, while the expressions of BAX and caspase-3 significantly increased (P<0.01). Metformin 43-52 BCL2 like 1 Homo sapiens 88-94 26266765-9 2015 Metformin induced apoptosis by down-regulating Bcl-2 and Bcl-xL expression, and up-regulating Bax and Cytochrome c expression. Metformin 0-9 BCL2 like 1 Homo sapiens 57-63 21388661-6 2011 Moreover, we established that metformin can induce apoptosis in OVCAR-3 and OVCAR-4 cells by activating caspases 3/7, down-regulating Bcl-2 and Bcl-xL expression, and up-regulating Bax and Bad expression. Metformin 30-39 BCL2 like 1 Homo sapiens 144-150 23151022-12 2012 In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin 13-22 BCL2 like 1 Homo sapiens 124-130 32241082-8 2021 Results: Sub-toxic doses of metformin enhanced nilotinib efficacy by reducing Bcl-xL expression, which induces apoptosis in CML cells. Metformin 28-37 BCL2 like 1 Homo sapiens 78-84 35196199-11 2022 Our study shows that treatments targeting pathways to enhance autophagy have the potential for treating early AMD and provide support for the use of metformin, which has been found to reduce the risk of AMD development in human patients.Abbreviations:AMD: age-related macular degeneration; AMPK: 5" adenosine monophosphate-activated protein kinase APOE: apolipoprotein E; ATM: ataxia telangiectasia mutated; BCL2L1/Bcl-xL: BCL2-like 1; DAPI: 4"-6-diamidino-2-phenylindole; ERG: electroretinogram; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner and outer photoreceptor segments; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; OCT: optical coherence tomography; ONL: outer nuclear layer; OPs: oscillatory potentials; p-EIF4EBP1: phosphorylated eukaryotic translation initiation factor 4E binding protein 1; p-MAPK14/p38: phosphorylated mitogen-activated protein kinase 14; RPE: retinal pigment epithelium; RPS6KB/p70 S6 kinase: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; TP53/TRP53/p53: tumor related protein 53; TSC2: TSC complex subunit 2; WT: wild type. Metformin 149-158 BCL2 like 1 Homo sapiens 408-414 35196199-11 2022 Our study shows that treatments targeting pathways to enhance autophagy have the potential for treating early AMD and provide support for the use of metformin, which has been found to reduce the risk of AMD development in human patients.Abbreviations:AMD: age-related macular degeneration; AMPK: 5" adenosine monophosphate-activated protein kinase APOE: apolipoprotein E; ATM: ataxia telangiectasia mutated; BCL2L1/Bcl-xL: BCL2-like 1; DAPI: 4"-6-diamidino-2-phenylindole; ERG: electroretinogram; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner and outer photoreceptor segments; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; OCT: optical coherence tomography; ONL: outer nuclear layer; OPs: oscillatory potentials; p-EIF4EBP1: phosphorylated eukaryotic translation initiation factor 4E binding protein 1; p-MAPK14/p38: phosphorylated mitogen-activated protein kinase 14; RPE: retinal pigment epithelium; RPS6KB/p70 S6 kinase: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; TP53/TRP53/p53: tumor related protein 53; TSC2: TSC complex subunit 2; WT: wild type. Metformin 149-158 BCL2 like 1 Homo sapiens 415-421 35196199-11 2022 Our study shows that treatments targeting pathways to enhance autophagy have the potential for treating early AMD and provide support for the use of metformin, which has been found to reduce the risk of AMD development in human patients.Abbreviations:AMD: age-related macular degeneration; AMPK: 5" adenosine monophosphate-activated protein kinase APOE: apolipoprotein E; ATM: ataxia telangiectasia mutated; BCL2L1/Bcl-xL: BCL2-like 1; DAPI: 4"-6-diamidino-2-phenylindole; ERG: electroretinogram; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner and outer photoreceptor segments; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; OCT: optical coherence tomography; ONL: outer nuclear layer; OPs: oscillatory potentials; p-EIF4EBP1: phosphorylated eukaryotic translation initiation factor 4E binding protein 1; p-MAPK14/p38: phosphorylated mitogen-activated protein kinase 14; RPE: retinal pigment epithelium; RPS6KB/p70 S6 kinase: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; TP53/TRP53/p53: tumor related protein 53; TSC2: TSC complex subunit 2; WT: wild type. Metformin 149-158 BCL2 like 1 Homo sapiens 423-434 31283677-8 2020 KRAS, GRB2, PCK2, BCL2L1, INSL3, DOK3, and PTPN1 were among the most significantly upregulated genes in both immunosuppression and diabetes subsets and were appropriately reverted by metformin as confirmed in vitro. Metformin 183-192 BCL2 like 1 Homo sapiens 18-24 32792943-8 2020 The presence of metformin also sensitized NSCLC cells to celecoxib-induced apoptosis by activating caspase-9, -8, -3, and -7, upregulating the pro-apoptotic proteins Bad and Bax, and downregulating the antiapoptotic proteins Bcl-xl and Bcl-2. Metformin 16-25 BCL2 like 1 Homo sapiens 225-231 29399562-5 2018 In addition, mRNA expression of pro-apoptotic genes, p21 and Bax, was decreased and of anti-apoptotic genes, Bcl-2 and Bcl-xl, was increased with metformin treatment compared to QUIN-induced cells. Metformin 146-155 BCL2 like 1 Homo sapiens 119-125 30625181-6 2019 Similarly, metformin treatment suppressed expressions of anti-apoptotic genes BCL2 and Bcl-xL, and mesenchymal genes vimentin, N-cadherin, Zeb1 and Zeb2 with simultaneous enhancement of apoptotic caspase 3 and Bax, and epithelial genes E-cadherin and keratin 19 expressions, confirming an inhibitory effect of metformin in tumorigenesis. Metformin 11-20 BCL2 like 1 Homo sapiens 87-93 30625181-9 2019 Similarly, cholesterol treatment inverted metformin-reduced several gene expressions (e.g., Bcl-xL, BCL2, Zeb1, vimentin, and BMI-1). Metformin 42-51 BCL2 like 1 Homo sapiens 92-98