Title : Relationship between inhibition of acetylcholinesterase and response of the rat phrenic nerve-diaphragm preparation to indirect stimulation at higher frequencies.

Pub. Date : 1979 Jun

PMID : 465887






4 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 1 Rat isolated diaphragm preparations were stimulated indirectly either intermittently at 20, 50 or 100 Hz or continuously at 0.2 Hz.2 Addition of 1.8 muM paraoxon (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which undergoes slow spontaneous reactivation) for 5 min to the organ bath produced a failure of the muscle to maintain tetanic tension (tetanic fade, Wedensky inhibition) and potentiated the neuromuscular blocking activity of exogenous acetylcholine. Paraoxon acetylcholinesterase Rattus norvegicus
2 The rates of recovery from both these effects were recorded.3 In a series of experiments with dyflos (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which does not undergo spontaneous reactivation) the relationship between functional acetylcholinesterase activity and neuromuscular blocking activity of exogenous acetylcholine was also determined.4 From the data obtained, the relationship between functional acetylcholinesterase activity and tetanic fade was calculated. Isoflurophate acetylcholinesterase Rattus norvegicus
3 The rates of recovery from both these effects were recorded.3 In a series of experiments with dyflos (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which does not undergo spontaneous reactivation) the relationship between functional acetylcholinesterase activity and neuromuscular blocking activity of exogenous acetylcholine was also determined.4 From the data obtained, the relationship between functional acetylcholinesterase activity and tetanic fade was calculated. Isoflurophate acetylcholinesterase Rattus norvegicus
4 The rates of recovery from both these effects were recorded.3 In a series of experiments with dyflos (which inhibits acetylcholinesterase by forming a phosphorylated enzyme which does not undergo spontaneous reactivation) the relationship between functional acetylcholinesterase activity and neuromuscular blocking activity of exogenous acetylcholine was also determined.4 From the data obtained, the relationship between functional acetylcholinesterase activity and tetanic fade was calculated. Isoflurophate acetylcholinesterase Rattus norvegicus