Pub. Date : 2020 Aug 20
PMID : 32660987
12 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Adding insult to injury: mechanistic basis for how AmpC mutations allow Pseudomonas aeruginosa to accelerate cephalosporin hydrolysis and evade avibactam. | Cephalosporins | beta-lactamase | Pseudomonas aeruginosa PAO1 |
2 | A key mechanism that provides extensive resistance to beta-lactam antibiotics is the inducible expression of AmpC beta-lactamase. | beta-Lactams | beta-lactamase | Pseudomonas aeruginosa PAO1 |
3 | Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal beta-lactam/beta-lactamase inhibitor (BLI) combinations ceftolozane/tazobactam and ceftazidime/avibactam. | beta-Lactams | beta-lactamase | Pseudomonas aeruginosa PAO1 |
4 | Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal beta-lactam/beta-lactamase inhibitor (BLI) combinations ceftolozane/tazobactam and ceftazidime/avibactam. | ceftolozane | beta-lactamase | Pseudomonas aeruginosa PAO1 |
5 | Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal beta-lactam/beta-lactamase inhibitor (BLI) combinations ceftolozane/tazobactam and ceftazidime/avibactam. | Tazobactam | beta-lactamase | Pseudomonas aeruginosa PAO1 |
6 | Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal beta-lactam/beta-lactamase inhibitor (BLI) combinations ceftolozane/tazobactam and ceftazidime/avibactam. | Ceftazidime | beta-lactamase | Pseudomonas aeruginosa PAO1 |
7 | Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal beta-lactam/beta-lactamase inhibitor (BLI) combinations ceftolozane/tazobactam and ceftazidime/avibactam. | avibactam | beta-lactamase | Pseudomonas aeruginosa PAO1 |
8 | Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. | avibactam | beta-lactamase | Pseudomonas aeruginosa PAO1 |
9 | It is remarkable that these mutations enhance the catalytic efficiency of AmpC towards ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. | ceftolozane | beta-lactamase | Pseudomonas aeruginosa PAO1 |
10 | It is remarkable that these mutations enhance the catalytic efficiency of AmpC towards ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. | Ceftazidime | beta-lactamase | Pseudomonas aeruginosa PAO1 |
11 | It is remarkable that these mutations enhance the catalytic efficiency of AmpC towards ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. | avibactam | beta-lactamase | Pseudomonas aeruginosa PAO1 |
12 | Knowledge gained from the molecular analysis of these and other AmpC resistance mutants we believe will help aid the design of beta-lactams and BLIs with reduced susceptibility to mutational resistance. | beta-Lactams | beta-lactamase | Pseudomonas aeruginosa PAO1 |