Title : Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein.

Pub. Date : 1992 Dec 1

PMID : 1454855






9 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 We report here that the negative cell cycle regulator protein p53 is an in vivo and in vitro substrate for protein kinase C, a cellular receptor for the tumor-promoter phorbol esters. Phorbol Esters transformation related protein 53, pseudogene Mus musculus
2 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Calcium transformation related protein 53, pseudogene Mus musculus
3 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Calcium transformation related protein 53, pseudogene Mus musculus
4 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Calcium transformation related protein 53, pseudogene Mus musculus
5 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Calcium transformation related protein 53, pseudogene Mus musculus
6 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Sepharose transformation related protein 53, pseudogene Mus musculus
7 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Sepharose transformation related protein 53, pseudogene Mus musculus
8 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Sepharose transformation related protein 53, pseudogene Mus musculus
9 We also demonstrate that p53 interacts in a calcium-dependent manner with S100b, a member of the S100 protein family involved in cell cycle progression and cell differentiation, and that such an interaction inhibits in vitro p53 phosphorylation by protein kinase C. The interaction between p53 and S100b was utilized for the purification of cellular and recombinant murine p53 by affinity chromatography with S100b-Sepharose. Sepharose transformation related protein 53, pseudogene Mus musculus