Title : Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation.

Pub. Date : 1997 Jun

PMID : 9241661






6 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Cyclophosphamide cytochrome P450 family 2 subfamily C member 19 Homo sapiens
2 The present study investigates the activity of four individual human CYP2C enzymes and their allelic variants in cyclophosphamide and ifosfamide activation as an initial attempt to gain insight into the underlying basis for the large interpatient differences in the clinical pharmacokinetics and metabolism of these anticancer drugs. Cyclophosphamide cytochrome P450 family 2 subfamily C member 19 Homo sapiens
3 With cyclophosphamide as substrate, CYP2C19 had the lowest apparent Km, followed by CYP2C9, CYP2C18 and CYP2C8, whereas in the case of ifosfamide, the rank order was: Km CYP2C19 < CYP2C18 < CYP2C9 < CYP2C8. Cyclophosphamide cytochrome P450 family 2 subfamily C member 19 Homo sapiens
4 With cyclophosphamide as substrate, CYP2C19 had the lowest apparent Km, followed by CYP2C9, CYP2C18 and CYP2C8, whereas in the case of ifosfamide, the rank order was: Km CYP2C19 < CYP2C18 < CYP2C9 < CYP2C8. Cyclophosphamide cytochrome P450 family 2 subfamily C member 19 Homo sapiens
5 Thus (a) wild type CYP2C19 and CYP2C9 are relatively low Km catalysts of cyclophosphamide and ifosfamide activation, and (b) all four human CYP2C enzymes activate these two anticancer prodrugs with varying efficiencies and with striking differences among naturally occurring allelic variants in the case of CYP2C9 and CYP2C18. Cyclophosphamide cytochrome P450 family 2 subfamily C member 19 Homo sapiens
6 Thus (a) wild type CYP2C19 and CYP2C9 are relatively low Km catalysts of cyclophosphamide and ifosfamide activation, and (b) all four human CYP2C enzymes activate these two anticancer prodrugs with varying efficiencies and with striking differences among naturally occurring allelic variants in the case of CYP2C9 and CYP2C18. Cyclophosphamide cytochrome P450 family 2 subfamily C member 19 Homo sapiens