Title : 3-Methylene-substituted androgens as novel aromatization inhibitors. Evidence of a requirement for C-3 oxygen in C-19 hydroxylations.

Pub. Date : 1986 May 25

PMID : 3700413






6 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Evidence of a requirement for C-3 oxygen in C-19 hydroxylations. Oxygen complement C3 Homo sapiens
2 Substitution of a methylene group for the C-3 oxygen in androstenedione, testosterone, and the corresponding 19-hydroxy and 19-oxo derivatives results in a new category of inhibitors of estrogen biosynthesis by human placental microsomes. Oxygen complement C3 Homo sapiens
3 Time-dependent inhibition of aromatization by 10 beta-difluoromethylestr-4-ene-3,17-dione and 10 beta-(2-propynyl)estr-4-ene,3,17-dione was abolished by substitution of a methylene function for the C-3 oxygen, suggesting that the presence of an oxygen at C-3 is required for an oxidative transformation at C-19, an initial step in aromatization. Oxygen complement C3 Homo sapiens
4 Time-dependent inhibition of aromatization by 10 beta-difluoromethylestr-4-ene-3,17-dione and 10 beta-(2-propynyl)estr-4-ene,3,17-dione was abolished by substitution of a methylene function for the C-3 oxygen, suggesting that the presence of an oxygen at C-3 is required for an oxidative transformation at C-19, an initial step in aromatization. Oxygen complement C3 Homo sapiens
5 Time-dependent inhibition of aromatization by 10 beta-difluoromethylestr-4-ene-3,17-dione and 10 beta-(2-propynyl)estr-4-ene,3,17-dione was abolished by substitution of a methylene function for the C-3 oxygen, suggesting that the presence of an oxygen at C-3 is required for an oxidative transformation at C-19, an initial step in aromatization. Oxygen complement C3 Homo sapiens
6 Time-dependent inhibition of aromatization by 10 beta-difluoromethylestr-4-ene-3,17-dione and 10 beta-(2-propynyl)estr-4-ene,3,17-dione was abolished by substitution of a methylene function for the C-3 oxygen, suggesting that the presence of an oxygen at C-3 is required for an oxidative transformation at C-19, an initial step in aromatization. Oxygen complement C3 Homo sapiens