Title : Disulfide Cross-Linked Poly(Methacrylic Acid) Iron Oxide Nanoparticles for Efficiently Selective Adsorption of Pb(II) from Aqueous Solutions.

Pub. Date : 2021 Jan 12

PMID : 33458549






9 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 In this study, the novel disulfide cross-linked poly(methacrylic acid) iron oxide (Fe3O4@S-S/PMAA) nanoparticles with selective adsorption, improved adsorption capability, and economic reusability were designed and prepared for selective adsorption of Pb(II) ions in aqueous solution. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
2 The effect of different factors on adsorption properties of the Fe3O4@S-S/PMAA nanoparticles for Co(II) and Pb(II) ions in aqueous solution was explored by batch adsorption experiments. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
3 For adsorption mechanism investigation, the adsorption of Fe3O4@S-S/PMAA for Co(II) and Pb(II) ions can be better fitted by a pseudo-second-order model, and the adsorption process of Fe3O4@S-S/PMAA for Co(II) and Pb(II) matches well with the Freundlich isotherm equation. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
4 For adsorption mechanism investigation, the adsorption of Fe3O4@S-S/PMAA for Co(II) and Pb(II) ions can be better fitted by a pseudo-second-order model, and the adsorption process of Fe3O4@S-S/PMAA for Co(II) and Pb(II) matches well with the Freundlich isotherm equation. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
5 For adsorption mechanism investigation, the adsorption of Fe3O4@S-S/PMAA for Co(II) and Pb(II) ions can be better fitted by a pseudo-second-order model, and the adsorption process of Fe3O4@S-S/PMAA for Co(II) and Pb(II) matches well with the Freundlich isotherm equation. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
6 For adsorption mechanism investigation, the adsorption of Fe3O4@S-S/PMAA for Co(II) and Pb(II) ions can be better fitted by a pseudo-second-order model, and the adsorption process of Fe3O4@S-S/PMAA for Co(II) and Pb(II) matches well with the Freundlich isotherm equation. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
7 Notably, in the adsorption experiments, the Fe3O4@S-S/PMAA nanoparticles were demonstrated to have a maximum adsorption capacity of 48.7 mg g-1 on Pb(II) ions with a selective adsorption order of Pb2+ > Co2+ > Cd2+ > Ni2+ > Cu2+ > Zn2+ > K+ > Na+ > Mg2+ > Ca2+ in the selective experiments. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
8 In the regeneration experiments, the Fe3O4@S-S/PMAA nanoparticles could be easily recovered by desorbing heavy metal ions from the adsorbents with eluents and showed good adsorption capacity for Co(II) and Pb(II) after eight recycles. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens
9 In brief, compared to other traditional nanoadsorbents, the as-prepared Fe3O4@S-S/PMAA with improved adsorption capability and high regeneration efficiency demonstrated remarkable affinity for adsorption of Pb(II) ions, which will provide a novel technical platform for selective removal of heavy metal ions from actual polluted water. ferryl iron submaxillary gland androgen regulated protein 3B Homo sapiens