Title : Mechanistic insights into folic acid-dependent vascular protection: dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity.

Pub. Date : 2009 Dec

PMID : 19660467






5 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Mechanistic insights into folic acid-dependent vascular protection: dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity. Folic Acid dihydrofolate reductase Mus musculus
2 Mechanistic insights into folic acid-dependent vascular protection: dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity. Folic Acid dihydrofolate reductase Mus musculus
3 Mechanistic insights into folic acid-dependent vascular protection: dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity. Folic Acid dihydrofolate reductase Mus musculus
4 Expression of dihydrofolate reductase (DHFR) was markedly increased by folic acid (FA, 50 micromol/L, 24 h) treatment in endothelial cells. Folic Acid dihydrofolate reductase Mus musculus
5 Expression of dihydrofolate reductase (DHFR) was markedly increased by folic acid (FA, 50 micromol/L, 24 h) treatment in endothelial cells. Folic Acid dihydrofolate reductase Mus musculus