Pub. Date : 2009 May 6
PMID : 19358538
10 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Valence ambiguous 1(3+) forms via redox-induced electron transfer, whereby the one-electron oxidation of the [Co(II)(DBQ(2-))Co(II)](2+) core forms [Co(III)(DBQ(*3-))Co(III)](3+), and it also exhibits spin crossover behavior to the core [Co(III)(DBQ(2-))Co(II)](3+) above room temperature. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
2 | Valence ambiguous 1(3+) forms via redox-induced electron transfer, whereby the one-electron oxidation of the [Co(II)(DBQ(2-))Co(II)](2+) core forms [Co(III)(DBQ(*3-))Co(III)](3+), and it also exhibits spin crossover behavior to the core [Co(III)(DBQ(2-))Co(II)](3+) above room temperature. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
3 | Valence ambiguous 1(3+) forms via redox-induced electron transfer, whereby the one-electron oxidation of the [Co(II)(DBQ(2-))Co(II)](2+) core forms [Co(III)(DBQ(*3-))Co(III)](3+), and it also exhibits spin crossover behavior to the core [Co(III)(DBQ(2-))Co(II)](3+) above room temperature. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
4 | Valence ambiguous 1(3+) forms via redox-induced electron transfer, whereby the one-electron oxidation of the [Co(II)(DBQ(2-))Co(II)](2+) core forms [Co(III)(DBQ(*3-))Co(III)](3+), and it also exhibits spin crossover behavior to the core [Co(III)(DBQ(2-))Co(II)](3+) above room temperature. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
5 | Valence ambiguous 1(3+) forms via redox-induced electron transfer, whereby the one-electron oxidation of the [Co(II)(DBQ(2-))Co(II)](2+) core forms [Co(III)(DBQ(*3-))Co(III)](3+), and it also exhibits spin crossover behavior to the core [Co(III)(DBQ(2-))Co(II)](3+) above room temperature. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
6 | Valence ambiguous 1(3+) forms via redox-induced electron transfer, whereby the one-electron oxidation of the [Co(II)(DBQ(2-))Co(II)](2+) core forms [Co(III)(DBQ(*3-))Co(III)](3+), and it also exhibits spin crossover behavior to the core [Co(III)(DBQ(2-))Co(II)](3+) above room temperature. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
7 | The first three correspond to [Co(II)DBQ(2-)Co(II)](2+) reduction to [Co(II)DBQ(*3-)Co(II)](+), and oxidation to [Co(III)DBQ(*3-)Co(III)](3+) and [Co(III)DBQ(2-)Co(III)](4+), respectively. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
8 | The first three correspond to [Co(II)DBQ(2-)Co(II)](2+) reduction to [Co(II)DBQ(*3-)Co(II)](+), and oxidation to [Co(III)DBQ(*3-)Co(III)](3+) and [Co(III)DBQ(2-)Co(III)](4+), respectively. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
9 | The first three correspond to [Co(II)DBQ(2-)Co(II)](2+) reduction to [Co(II)DBQ(*3-)Co(II)](+), and oxidation to [Co(III)DBQ(*3-)Co(III)](3+) and [Co(III)DBQ(2-)Co(III)](4+), respectively. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |
10 | The first three correspond to [Co(II)DBQ(2-)Co(II)](2+) reduction to [Co(II)DBQ(*3-)Co(II)](+), and oxidation to [Co(III)DBQ(*3-)Co(III)](3+) and [Co(III)DBQ(2-)Co(III)](4+), respectively. | co(iii) | mitochondrially encoded cytochrome c oxidase II | Homo sapiens |