Title : Analysis of HO2 and OH formation mechanisms using FM and UV spectroscopy in dimethyl ether oxidation.

Pub. Date : 2007 May 17

PMID : 17455918






5 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 We have also proposed that a new HCO formation pathway via QOOH isomerization to HOQO species and OH + CH3OCH2O2 --> HO2 + CH3OCH2O are to be considered, to account for the fast and slow HO2 formations, as well as the total yield. 7 alpha-hydroxy-4-cholesten-3-one heme oxygenase 2 Homo sapiens
2 We have also proposed that a new HCO formation pathway via QOOH isomerization to HOQO species and OH + CH3OCH2O2 --> HO2 + CH3OCH2O are to be considered, to account for the fast and slow HO2 formations, as well as the total yield. 7 alpha-hydroxy-4-cholesten-3-one heme oxygenase 2 Homo sapiens
3 It was revealed that the HO2 formation mechanism changes at 500 K, i.e., HCO + O2 via HCHO + OH and the above proposed direct HCO formation dominates over 500 K, while a series of reactions following CH3OCH2O2 self-reaction and OH + CH3OCH2O2 reaction mainly contribute below 500 K. The pressure dependent rate constant of the CH3OCH2 thermal decomposition reaction has been separately measured since it has large negative sensitivity for HO2 formation and is essential to eliminate the ambiguity in the CH3OCH2 + O2 mechanism at higher temperature. 7 alpha-hydroxy-4-cholesten-3-one heme oxygenase 2 Homo sapiens
4 It was revealed that the HO2 formation mechanism changes at 500 K, i.e., HCO + O2 via HCHO + OH and the above proposed direct HCO formation dominates over 500 K, while a series of reactions following CH3OCH2O2 self-reaction and OH + CH3OCH2O2 reaction mainly contribute below 500 K. The pressure dependent rate constant of the CH3OCH2 thermal decomposition reaction has been separately measured since it has large negative sensitivity for HO2 formation and is essential to eliminate the ambiguity in the CH3OCH2 + O2 mechanism at higher temperature. 7 alpha-hydroxy-4-cholesten-3-one heme oxygenase 2 Homo sapiens
5 It was revealed that the HO2 formation mechanism changes at 500 K, i.e., HCO + O2 via HCHO + OH and the above proposed direct HCO formation dominates over 500 K, while a series of reactions following CH3OCH2O2 self-reaction and OH + CH3OCH2O2 reaction mainly contribute below 500 K. The pressure dependent rate constant of the CH3OCH2 thermal decomposition reaction has been separately measured since it has large negative sensitivity for HO2 formation and is essential to eliminate the ambiguity in the CH3OCH2 + O2 mechanism at higher temperature. 7 alpha-hydroxy-4-cholesten-3-one heme oxygenase 2 Homo sapiens