Title : Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk.

Pub. Date : 2006 Sep

PMID : 16569655






3 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 The decreased risk we observed with the hOGG1 326 Cys/Cys genotype confirms an earlier report and the further reduced risk found with the CYP1B1 (432 Leu/Leu or Leu/Val)-hOGG1 (326 Cys/Cys)-XRCC1 (Arg/Arg or Arg/Gln) genotype combination may lend new insights to the importance of ROS generated from non-receptor-mediated estrogenic mechanisms in more aggressive prostate cancer. Leucine X-ray repair cross complementing 1 Homo sapiens
2 The decreased risk we observed with the hOGG1 326 Cys/Cys genotype confirms an earlier report and the further reduced risk found with the CYP1B1 (432 Leu/Leu or Leu/Val)-hOGG1 (326 Cys/Cys)-XRCC1 (Arg/Arg or Arg/Gln) genotype combination may lend new insights to the importance of ROS generated from non-receptor-mediated estrogenic mechanisms in more aggressive prostate cancer. Leucine X-ray repair cross complementing 1 Homo sapiens
3 The decreased risk we observed with the hOGG1 326 Cys/Cys genotype confirms an earlier report and the further reduced risk found with the CYP1B1 (432 Leu/Leu or Leu/Val)-hOGG1 (326 Cys/Cys)-XRCC1 (Arg/Arg or Arg/Gln) genotype combination may lend new insights to the importance of ROS generated from non-receptor-mediated estrogenic mechanisms in more aggressive prostate cancer. Leucine X-ray repair cross complementing 1 Homo sapiens