Title : Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: a density functional theory study.

Pub. Date : 2006 Feb 16

PMID : 16471857






4 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 The activation barrier of the RDS (epoxidation step: DeltaE(act) = 19.6 kcal/mol) is in the same range as that in the published computationally investigated olefin epoxidation mechanisms involving Ti sites (without Au involved) indicating that isolated Au clusters and possibly Au clusters on non-Ti supports can be active for gas-phase partial oxidation, even though cooperative mechanisms involving Au clusters/Ti-based-supports may be favored. Gold peripherin 2 Homo sapiens
2 The activation barrier of the RDS (epoxidation step: DeltaE(act) = 19.6 kcal/mol) is in the same range as that in the published computationally investigated olefin epoxidation mechanisms involving Ti sites (without Au involved) indicating that isolated Au clusters and possibly Au clusters on non-Ti supports can be active for gas-phase partial oxidation, even though cooperative mechanisms involving Au clusters/Ti-based-supports may be favored. Gold peripherin 2 Homo sapiens
3 The activation barrier of the RDS (epoxidation step: DeltaE(act) = 19.6 kcal/mol) is in the same range as that in the published computationally investigated olefin epoxidation mechanisms involving Ti sites (without Au involved) indicating that isolated Au clusters and possibly Au clusters on non-Ti supports can be active for gas-phase partial oxidation, even though cooperative mechanisms involving Au clusters/Ti-based-supports may be favored. Gold peripherin 2 Homo sapiens
4 The activation barrier of the RDS (epoxidation step: DeltaE(act) = 19.6 kcal/mol) is in the same range as that in the published computationally investigated olefin epoxidation mechanisms involving Ti sites (without Au involved) indicating that isolated Au clusters and possibly Au clusters on non-Ti supports can be active for gas-phase partial oxidation, even though cooperative mechanisms involving Au clusters/Ti-based-supports may be favored. Gold peripherin 2 Homo sapiens