Title : Induction of manganese-superoxide dismutase by YS 51, a synthetic 1-(beta-naphtylmethyl)6,7-dihydroxy- 1,2,3,4-tetrahydroisoquinoline alkaloid: implication for anti-inflammatory actions.

Pub. Date : 2004 Jun

PMID : 15118344






4 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 In Hela cells, the induction of Mn-SOD mRNA by YS 51 was in a time- and dose-dependent manner and the expression of Mn-SOD mRNA was increased to a maximum of 4-fold in 9 h. Enhancement of Mn-SOD mRNA by YS 51 was completely abolished by actinomycin D but not cycloheximide, suggesting that the induction of Mn-SOD mRNA byYS 51 is independent of new protein synthesis. Cycloheximide superoxide dismutase 2 Homo sapiens
2 In Hela cells, the induction of Mn-SOD mRNA by YS 51 was in a time- and dose-dependent manner and the expression of Mn-SOD mRNA was increased to a maximum of 4-fold in 9 h. Enhancement of Mn-SOD mRNA by YS 51 was completely abolished by actinomycin D but not cycloheximide, suggesting that the induction of Mn-SOD mRNA byYS 51 is independent of new protein synthesis. Cycloheximide superoxide dismutase 2 Homo sapiens
3 In Hela cells, the induction of Mn-SOD mRNA by YS 51 was in a time- and dose-dependent manner and the expression of Mn-SOD mRNA was increased to a maximum of 4-fold in 9 h. Enhancement of Mn-SOD mRNA by YS 51 was completely abolished by actinomycin D but not cycloheximide, suggesting that the induction of Mn-SOD mRNA byYS 51 is independent of new protein synthesis. Cycloheximide superoxide dismutase 2 Homo sapiens
4 In Hela cells, the induction of Mn-SOD mRNA by YS 51 was in a time- and dose-dependent manner and the expression of Mn-SOD mRNA was increased to a maximum of 4-fold in 9 h. Enhancement of Mn-SOD mRNA by YS 51 was completely abolished by actinomycin D but not cycloheximide, suggesting that the induction of Mn-SOD mRNA byYS 51 is independent of new protein synthesis. Cycloheximide superoxide dismutase 2 Homo sapiens