Pub. Date : 2004 Feb 20
PMID : 14638688
5 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | Comparison of the architecture around the active site of soybean beta-amylase and Bacillus cereus beta-amylase showed that the hydrogen bond networks (Glu380-(Lys295-Met51) and Glu380-Asn340-Glu178) in soybean beta-amylase around the base catalytic residue, Glu380, seem to contribute to the lower pH optimum of soybean beta-amylase. | Hydrogen | beta-amylase | Glycine max |
2 | Comparison of the architecture around the active site of soybean beta-amylase and Bacillus cereus beta-amylase showed that the hydrogen bond networks (Glu380-(Lys295-Met51) and Glu380-Asn340-Glu178) in soybean beta-amylase around the base catalytic residue, Glu380, seem to contribute to the lower pH optimum of soybean beta-amylase. | Hydrogen | beta-amylase | Glycine max |
3 | Comparison of the architecture around the active site of soybean beta-amylase and Bacillus cereus beta-amylase showed that the hydrogen bond networks (Glu380-(Lys295-Met51) and Glu380-Asn340-Glu178) in soybean beta-amylase around the base catalytic residue, Glu380, seem to contribute to the lower pH optimum of soybean beta-amylase. | Hydrogen | beta-amylase | Glycine max |
4 | Comparison of the architecture around the active site of soybean beta-amylase and Bacillus cereus beta-amylase showed that the hydrogen bond networks (Glu380-(Lys295-Met51) and Glu380-Asn340-Glu178) in soybean beta-amylase around the base catalytic residue, Glu380, seem to contribute to the lower pH optimum of soybean beta-amylase. | Hydrogen | beta-amylase | Glycine max |
5 | These results indicated that the reduced pKa value of Glu380 is stabilized by the hydrogen bond network and is responsible for the lower pH optimum of soybean beta-amylase compared with that of the bacterial beta-amylase. | Hydrogen | beta-amylase | Glycine max |