Title : Glutamate-malate metabolism in liver mitochondria. A model constructed on the basis of mitochondrial levels of enzymes, specificity, dissociation constants, and stoichiometry of hetero-enzyme complexes.

Pub. Date : 1992 May 25

PMID : 1350279






3 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 The aminotransferase in these hetero-enzyme complexes could be supplied with oxalacetate because binding of aminotransferase to the high molecular weight enzymes can enhance binding of malate dehydrogenase, and binding of both malate dehydrogenase and the aminotransferase facilitated binding of fumarase. Oxaloacetic Acid malic enzyme 1 Homo sapiens
2 The aminotransferase in these hetero-enzyme complexes could be supplied with oxalacetate because binding of aminotransferase to the high molecular weight enzymes can enhance binding of malate dehydrogenase, and binding of both malate dehydrogenase and the aminotransferase facilitated binding of fumarase. Oxaloacetic Acid malic enzyme 1 Homo sapiens
3 The level of malate dehydrogenase was found to be so high (140 microM) in liver mitochondria, compared with that of citrate synthase (25 microM) and the pyruvate dehydrogenase complex (0.3 microM), that there would also be a sufficient supply of oxalacetate to citrate synthase-pyruvate dehydrogenase. Oxaloacetic Acid malic enzyme 1 Homo sapiens