Title : Zinc inhibits the nuclear translocation of the tumor suppressor protein p53 and protects cultured human neurons from copper-induced neurotoxicity.

Pub. Date : 2002

PMID : 12095159






11 Functional Relationships(s)
Download
Sentence
Compound Name
Protein Name
Organism
1 Thus, this work explored the ability of Zn to protect human neurons in culture (NT2-N) from Cu-mediated death and tested the hypotheses that the tumor-suppressor protein p53 plays a role in Cu-induced neuronal death and is part of the mechanism of Zn protection. Zinc tumor protein p53 Homo sapiens
2 However, the addition of 700 microM Zn to Cu-treated cells resulted in neuronal viability that was not different from untreated controls through 24 h. p53 mRNA abundance, while increased by the addition of Cu and 100 microM Zn, was decreased to 50% of control with the addition of 500 microM Zn in Cu-treated cells, and to 10% of control with 700 microM Zn. Zinc tumor protein p53 Homo sapiens
3 However, the addition of 700 microM Zn to Cu-treated cells resulted in neuronal viability that was not different from untreated controls through 24 h. p53 mRNA abundance, while increased by the addition of Cu and 100 microM Zn, was decreased to 50% of control with the addition of 500 microM Zn in Cu-treated cells, and to 10% of control with 700 microM Zn. Zinc tumor protein p53 Homo sapiens
4 However, the addition of 700 microM Zn to Cu-treated cells resulted in neuronal viability that was not different from untreated controls through 24 h. p53 mRNA abundance, while increased by the addition of Cu and 100 microM Zn, was decreased to 50% of control with the addition of 500 microM Zn in Cu-treated cells, and to 10% of control with 700 microM Zn. Zinc tumor protein p53 Homo sapiens
5 However, the addition of 700 microM Zn to Cu-treated cells resulted in neuronal viability that was not different from untreated controls through 24 h. p53 mRNA abundance, while increased by the addition of Cu and 100 microM Zn, was decreased to 50% of control with the addition of 500 microM Zn in Cu-treated cells, and to 10% of control with 700 microM Zn. Zinc tumor protein p53 Homo sapiens
6 Furthermore, the addition of 500-700 microM Zn prevented the movement of p53 into the nucleus suggesting that Zn not only protects neurons from Cu toxicity by regulating p53 mRNA abundance but also by preventing the translocation of p53 to the nucleus. Zinc tumor protein p53 Homo sapiens
7 Furthermore, the addition of 500-700 microM Zn prevented the movement of p53 into the nucleus suggesting that Zn not only protects neurons from Cu toxicity by regulating p53 mRNA abundance but also by preventing the translocation of p53 to the nucleus. Zinc tumor protein p53 Homo sapiens
8 Furthermore, the addition of 500-700 microM Zn prevented the movement of p53 into the nucleus suggesting that Zn not only protects neurons from Cu toxicity by regulating p53 mRNA abundance but also by preventing the translocation of p53 to the nucleus. Zinc tumor protein p53 Homo sapiens
9 Furthermore, the addition of 500-700 microM Zn prevented the movement of p53 into the nucleus suggesting that Zn not only protects neurons from Cu toxicity by regulating p53 mRNA abundance but also by preventing the translocation of p53 to the nucleus. Zinc tumor protein p53 Homo sapiens
10 Furthermore, the addition of 500-700 microM Zn prevented the movement of p53 into the nucleus suggesting that Zn not only protects neurons from Cu toxicity by regulating p53 mRNA abundance but also by preventing the translocation of p53 to the nucleus. Zinc tumor protein p53 Homo sapiens
11 Furthermore, the addition of 500-700 microM Zn prevented the movement of p53 into the nucleus suggesting that Zn not only protects neurons from Cu toxicity by regulating p53 mRNA abundance but also by preventing the translocation of p53 to the nucleus. Zinc tumor protein p53 Homo sapiens