Pub. Date : 2002 May 14
PMID : 12011471
3 Functional Relationships(s)Download |
Sentence | Compound Name | Protein Name | Organism |
1 | CRH, dehydroepiandrosterone, and 17 beta-estradiol did not modulate CRH-R expression, whereas testosterone at 10(-7) M down-regulated CRH-R1 and CRH-R2 mRNA expression at 6 to 24 h, and growth hormone (GH) switched CRH-R1 mRNA expression to CRH-R2 at 24 h. Based on these findings, CRH may be an autocrine hormone for human sebocytes that exerts homeostatic lipogenic activity, whereas testosterone and growth hormone induce CRH negative feedback. | Testosterone | growth hormone 1 | Homo sapiens |
2 | CRH, dehydroepiandrosterone, and 17 beta-estradiol did not modulate CRH-R expression, whereas testosterone at 10(-7) M down-regulated CRH-R1 and CRH-R2 mRNA expression at 6 to 24 h, and growth hormone (GH) switched CRH-R1 mRNA expression to CRH-R2 at 24 h. Based on these findings, CRH may be an autocrine hormone for human sebocytes that exerts homeostatic lipogenic activity, whereas testosterone and growth hormone induce CRH negative feedback. | Testosterone | growth hormone 1 | Homo sapiens |
3 | CRH, dehydroepiandrosterone, and 17 beta-estradiol did not modulate CRH-R expression, whereas testosterone at 10(-7) M down-regulated CRH-R1 and CRH-R2 mRNA expression at 6 to 24 h, and growth hormone (GH) switched CRH-R1 mRNA expression to CRH-R2 at 24 h. Based on these findings, CRH may be an autocrine hormone for human sebocytes that exerts homeostatic lipogenic activity, whereas testosterone and growth hormone induce CRH negative feedback. | Testosterone | growth hormone 1 | Homo sapiens |